Randomness and isometries in echo state networks and compressed sensing

نویسنده

  • Ashley Prater-Bennette
چکیده

Although largely different concepts, echo state networks and compressed sensing models both rely on collections of random weights; as the reservoir dynamics for echo state networks, and the sensing coefficients in compressed sensing. Several methods for generating the random matrices and metrics to indicate desirable performance are well-studied in compressed sensing, but less so for echo state networks. This work explores any overlap in these compressed sensing methods and metrics for application to echo state networks. Several methods for generating the random reservoir weights are considered, and a new metric, inspired by the restricted isometry property for compressed sensing, is proposed for echo state networks. The methods and metrics are investigated theoretically and experimentally, with results suggesting that the same types of random matrices work well for both echo state network and compressed sensing scenarios, and that echo state network classification accuracy is improved when the proposed restricted isometry-like constants are close to 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derandomizing restricted isometries via the Legendre symbol

Abstract. The restricted isometry property (RIP) is an important matrix condition in compressed sensing, but the best matrix constructions to date use randomness. This paper leverages pseudorandom properties of the Legendre symbol to reduce the number of random bits in an RIP matrix with Bernoulli entries. In this regard, the Legendre symbol is not special—our main result naturally generalizes ...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Transferring Learning from External to Internal Weights in Echo-State Networks with Sparse Connectivity

Modifying weights within a recurrent network to improve performance on a task has proven to be difficult. Echo-state networks in which modification is restricted to the weights of connections onto network outputs provide an easier alternative, but at the expense of modifying the typically sparse architecture of the network by including feedback from the output back into the network. We derive m...

متن کامل

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.01381  شماره 

صفحات  -

تاریخ انتشار 2018